
1. Features

- Lossless load current detection in secondary side
- Programmable load current for LED indicator color change

2. Applications

- Li+ and Ni-MH battery chargers
- Adapters
- E-bike chargers

3. Typical applications

Pin number	Pin Name	Pin Type	Pin Functions
1	BIAS I/O		Set the load current for LED switching
2	GND	Ground	Ground of the controller
3	DET	Input	Detection of load current
4	R	Output	Current sink for red LED indictor
5	G	Output	Current sink for green LED indictor
6	VCC	Power supply	Power supply of the controller

μP7358B

5. Absolute maximum ratings (Note 1)

Parameter	Name	Range	Unit	
-----------	------	-------	------	--

20200116

Secondary side charging indicator

Voltage at VCC to Ground	VCC	-0.3 to 36	V
Voltage at R/Gto Ground	R/G	-0.3 to 36	V
Voltage at DET to Ground	DET	-0.3 to 45	V
Voltage at BIAS to Ground	BIAS	-0.3 to 5.0	V
Continuous R/G pin sink current	$I_{R/G}$	20	mA
Power dissipation @ T _A =25 °C	P_D	0.3	W
Maximum junction temperature	Тлмах	150	\mathcal{C}
Lead temperature	Tlead	300	\mathcal{C}
Storage temperature	Tstg	-55 to 150	$^{\circ}$
ESD 电压(ANSI/STM5.1-2001)	HBM	±4000	V
ESD 电压 (JEDEC JESD22-C101C)	CDM	±1000	V
Latchup test per JEDEC 78D		+/-200	mA

Note1: Stresses over those listed under "Absolute maximum ratings" may cause permanent damages to the device. These are stress ratings only, functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods of time may affect device reliability.

6. Thermal parameter

Junction to ambient thermal resistance	θ JA(SOT23-6)	200	°C/W
--	---------------	-----	------

7. Recommended operating conditions

Parameter	Symbol	Min	Max	Unit
Supply voltage	VCC	4.0	32	V
DET voltage	V _{DET}	-0.2	40.0	V
R/G voltage	V_R/V_G	-0.2	32	V
Ambient Temperature	TA	-40	85	${\mathfrak C}$

8. Electrical parameters

Parameter	Symbol	Condition	Min	Тур	Max	Unit			
Power supply									
Operating current	Icc		200	300	400	μΑ			
Startup voltage	Vst		3.2	3.5	3.9	V			
Minimum operating voltage	Vuvlo		3.0	3.3	3.7	V			
Startup current	Ist	VCC= Vst -0.1V	50	130	200	μΑ			
Internal timer period	T_{P}		6	8	10	mS			
LED switching	LED switching								
Capacitor for Σ Tons R2G	C _{R2G}		14.7	15.5	16.3	nF			
Capacitor for Σ Tons G2R	C _{G2R}		19.1	20.2	21.2	nF			
Minimum Vs voltage	V _{S_MIN}			V	4.5	V			
Ampere Second Product	ASP		110	143	173	μΑ*μS			

9. Functional block diagram

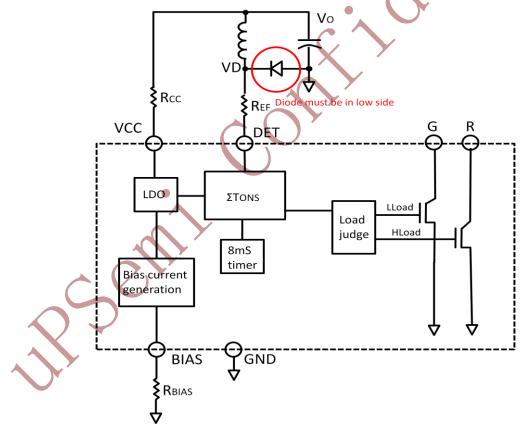


Fig.2 µP7358B block diagram

10. Principle of operation

The $\mu P7358B$ detects the load currents of a switching mode power supply and switching the color of a common anode LED indicator when the load current is crossing a specified load (e.g. 10% of full load) during battery charging process. The $\mu P7358B$ supports switching mode power supply

working in Discontinuous Conduction Mode (DCM), Quasi Resonant Mode (QR) or Continuous Conduction Mode (CCM). The load current that LED is changing its color is set by a resistor from the BIAS pin to GND.

10.1 Power up and power down sequences

Refer to Fig.1, after AC power supply is applied to the converter, the primary switcher (U1) starts to deliver energy to the output capacitor C11, the output voltage begins rising from 0V. When the VCC voltage of μ P7358B is larger than the startup voltage Vst, the controller μ P7358B starts to work, pin R exhibits low impedance to GND, pin G exhibits high impedance to GND, LED is in red state. When the AC power supply is removed from the converter, the VCC voltage of μ P7358B will fall below Vuvlo, the controller stops working, LED is in off state. For typical Vout 20V~32V application, R9=10K. When Vout lower than 20V, Reduce R9 appropriately.

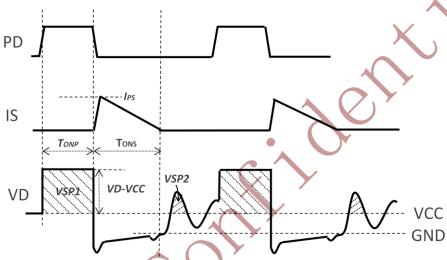


Fig.3 Load current detection in μP7358B

10.2 Load current detection

Refer to Fig.2 and Fig.3, μ P7358B detects load current by analyzing the voltage waveforms of the secondary winding via DET pin. The mean secondary winding conduction time is an index of the load current. μ P7358B summarizes the secondary winding conduction time Σ Tons in a pre-defined time internal (8mS), then compares with the red to green changing time (Σ Tr2G) and the green to red changing time (Σ Tr2R) setting with RbIAS by

Σ Tr2G=RBIAS*Cr2G

and

Σ Tg2r=Rbias*Cg2r

If Σ Tons $\langle \Sigma$ Tr2G, pin R switches from low impedance to high impedance, pin G switches from high impedance to low impedance, LED color changes from red to green. On the other hand, if Σ Tons Σ TG2R, pin R switches from high impedance to low impedance, pin G switches from low impedance to high impedance, LED color changes from green to red.

 μ P7358B analyzes the Volt-Second Product (VSP) of the secondary winding waveform via DET pin to identify the secondary winding conduction. The volt-second product during primary switch turn on (VSP1) is much (usually 2.5X+) higher than the volt-second product of the resonant ringing (VSP2), as illustrated in Fig.3. In μ P7358B, a reference VSP_{REF} is defined to distinguish the primary side switch turn on and the resonant ringing:

Secondary side charging indicator

VSP_{REF}=R_{EF}*ASP

where ASP is an μ P7358B parameter called Ampere-Second Product. The measured VSP generated by primary side turn on, which equals (VD-VCC)*Tonp, must be larger than VSP_{REF} in all load conditions to guarantee the proper function of μ P7358. Usually, R_{EF} is selected as

where VSP_{MIN} is the minimum VSP of the secondary winding, generated by the primary side power switch turn on.

VSP_{MIN} corresponds to the minimum primary peak current, usually in no load condition. In the 5V/1A application of Fig1, $R_{EF}(R8)=75K\Omega$.

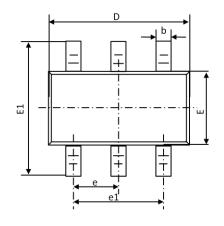
 μ P7358B needs a minimum secondary winding voltage at primary side power switch turn on (T_{ONP}) for load current detection. For μ P7358B, the value of VD–VCC during primary side power switch turn on time (T_{ONP}) must be higher than V_{S_MIN} . The corresponding minimum rectified input line voltage (V_{IN_MIN}) is $V_{IN_MIN} = V_{S_MIN}*(N_P/N_S)$.

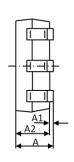
10.3 Setting the load current for color switching of LED

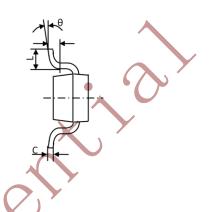
The load current to switching LED color is set by R_{BIAS} . For a given switching mode power supply, the total T_{ONS} in a specified time interval (8mS for $\mu P7358B$) is an index of the load current. If we want to set 10% load current for color switching, we can simply measure the total T_{ONS} (Σ T_{ONS}) at 10% load current in a specified time interval (8mS for $\mu P7358B$), and select

$$R_{\text{BIAS}} \!\!=\!\! \Sigma / T_{\text{R2G}} \! / C_{\text{R2G}}$$

Thus the LED indicator will change from red to green at 10% load current, and from green to red at 13% load current.

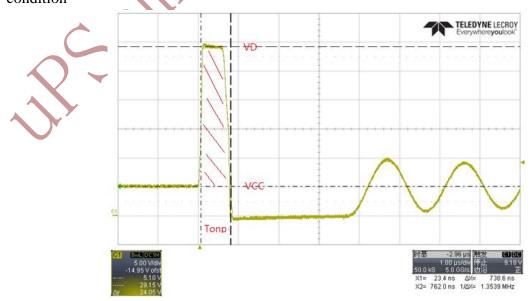





11. Ordering information

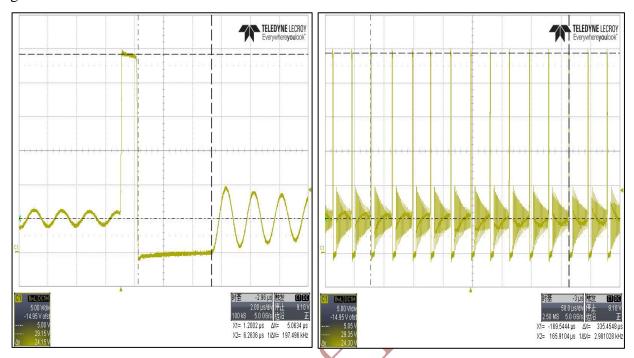
Part number Mark ID		Package	Packing		
μΡ7358ΒΚ	78B	SOT23-6	3,000 / Reel		

12. Mechanical dimensions



UNIT	A	A1	A2	b	С	D	E	E1	e	e1	L	θ
mm	1.45MAX	0 0.15	0.9 1.3	0.3 0.5	0.1 0.2	2.82 3.02	1.5 1.7	2.65 2.95	0.95	1.8 2	0.3 0.6	0° 8°

Appendix: Procedure of selecting Ref, Rbias


1. Measure the minimum Volt-Second Product (VSPMIN) @ power device turn on, in no load condition

 $VSP_{\text{MIN}}{=}24.05V*0.7386uS$ $R_{\text{EF}}{=}0.6*VSP_{\text{MIN}}/ASP{=}74.5K\Omega$

2. Measure the Tons and average operating frequency at intended load to switch LED color red to green:

Tons=5.0634uS f=29.81KHz

 $\label{eq:sms} \begin{array}{lll} \Sigma \ \ Tons@8mS = & \ TR2G = 8mS*Tons*f = & 1208uS \end{array}$

Rbias= Σ Tr2G/Cr2G=1208uS/15.5nF=78K Ω

3. Fine tune the RBIAS resistor to get the exact load current of switching LED from red to green: if the measured load current of LED color switching is larger than target value, decrease the RBIAS slightly; if the measured load current of LED color switching is smaller than target value, increase the RBIAS slightly.

7/7